Dear List,
Bill Hamilton asked, " I came across modus tollens. If someone could provide definitions, I'd be grateful."
A modus tollens is a term of propositional (Stoic) logic defined as the form:
if p then q; not q; therefore not p
Closely related is the conventional modus ponens in the form "if p then q; p; therefore q."
Best Regards,
K. Lee Lerner
Science Policy Institute
P.S. A good on-line resource for scholarly dictionaries is maintained by Stanford at :
< http://vlib.stanford.edu/Overview.html >
------ =_NextPart_000_01BD572B.149EBEC0
Content-Type: application/ms-tnef
Content-Transfer-Encoding: base64
eJ8+IhETAQaQCAAEAAAAAAABAAEAAQeQBgAIAAAA5AQAAAAAAADoAAENgAQAAgAAAAIAAgABBJAG
AEQBAAABAAAADAAAAAMAADACAAAACwAPDgAAAAACAf8PAQAAAG0AAAAAAAAAtTvCwCx3EBqhvAgA
KypWwhUAAADgMxnziHbREbjgREVTVAAAhIEAAAAAAACBKx+kvqMQGZ1uAN0BD1QCAAAAAEV2b2x1
dGlvbiBMaXN0AFNNVFAAZXZvbHV0aW9uQGNhbHZpbi5lZHUAAAAAHgACMAEAAAAFAAAAU01UUAAA
AAAeAAMwAQAAABUAAABldm9sdXRpb25AY2FsdmluLmVkdQAAAAADABUMAQAAAAMA/g8GAAAAHgAB
MAEAAAARAAAAJ0V2b2x1dGlvbiBMaXN0JwAAAAACAQswAQAAABoAAABTTVRQOkVWT0xVVElPTkBD
QUxWSU4uRURVAAAAAwAAOQAAAAALAEA6AQAAAAIB9g8BAAAABAAAAAAAAALlPgEIgAcAGAAAAElQ
TS5NaWNyb3NvZnQgTWFpbC5Ob3RlADEIAQSAAQAvAAAAUkU6IFJlbWVkaWFsIGVkdWNhdGlvbiBu
ZWVkZWQgKHBsZWFzZSBoZWxwIDotKQCwDwEFgAMADgAAAM4HAwAYAA0ALQAPAAIAOwEBIIADAA4A
AADOBwMAGAANACwANQACAGABAQmAAQAhAAAAMkM1RDlGNDkxN0MzRDExMUI4RTA0NDQ1NTM1NDAw
MDAA4AYBA5AGAFQEAAASAAAACwAjAAAAAAADACYAAAAAAAsAKQAAAAAAAwA2AAAAAABAADkAgIGv
XV1XvQEeAHAAAQAAAC8AAABSRTogUmVtZWRpYWwgZWR1Y2F0aW9uIG5lZWRlZCAocGxlYXNlIGhl
bHAgOi0pAAACAXEAAQAAABsAAAABvVdc7VRJn10pwxcR0bjgREVTVAAAAAAY47EAHgAeDAEAAAAF
AAAAU01UUAAAAAAeAB8MAQAAABUAAABsZXJuZGVza0BzcHJ5bmV0LmNvbQAAAAADAAYQFDeU6QMA
BxCdAQAAHgAIEAEAAABlAAAAREVBUkxJU1QsQklMTEhBTUlMVE9OQVNLRUQsIklDQU1FQUNST1NT
TU9EVVNUT0xMRU5TSUZTT01FT05FQ09VTERQUk9WSURFREVGSU5JVElPTlMsSURCRUdSQVRFRlVM
IkFNTwAAAAACAQkQAQAAALoCAAC2AgAAcQUAAExaRnV4qivZ/wAKAQ8CFQKoBesCgwBQAvIJAgBj
aArAc2V0MjcGAAbDAoMyA8UCAHByQnER4nN0ZW0CgzP3AuQHEwKDNANFEzUHbQKA/n0KgAjPCdkC
gAqBDbELYOBuZzEwMxRQCwoVYVsL8BVgYw3hE1BvE9BjKQVARGUKwUwEAHQs4QqLbGkzNhuxGs8b
1o0KhUIDEAMgSGFtAxBCdAIgIGFzawmALBwgIgrhHjsb1kkgY20gkGUhAAUAbwQRBGF1zwQgINAg
UAnwcy4eHxu4oyGfIqZmIHMDcGUCIEMjYAWgdWxkIBvRdhppDbAgDbELgGl0aaUCIHMhYEknKPBi
I2D1CcBhE9BmKNALRhRRC/L3G9YkzxupIitfJiUmjh8P+wXACoVBMB8N4QCgG9Yj+z8yzxupBAAh
ACRABJBtIHZvKBApAnAjsCnjB0AghChTINBpYykgF9C+ZzkwKYQJgCEBJEBoI2D7AhA3oDoKhgGR
H7Y7gzuDDwaQKQA6cgOgcTsgbv8b8D1yOoEYQDrBI2A9sj0QGzHNCoVDF9ARsGx5IH8YQAtgE9Ao
8DcxOoIFoG7+dgnwOIU1jzPvKQAocQCA/0LPDBQmDzYPNxEDoDqCOrOVRzAiPOtwPgpxLiGANzHc
Gl8bbUIHkAVAUmXOZwsRKjBMRUsuHJAJ4E9QEQSgBJBMRVNjCJBuumMjYFAG8DkwQOBJAIAZKfB0
dRPQMdxQLlMzUAAysGdvBHA3wG4t/x3AKIEYQCgwCHBRgTrBKCDvEXAG8ArAQNFkOTA4gwiBvwQg
NzEAwAuAAZA6A2JA4D85AABwOsE6MQVAOwY8IIJoAkBwOi8vdh3ALGIuE8BYRC4JgHUvWk9CIHIp
QAfQLlmAbf0DID4c/x4PMS9MOCa/H4krTL9gfyAXYQBkAAAAAwAQEAAAAAADABEQAQAAAEAABzCg
ceNQXVe9AUAACDCgceNQXVe9AR4APQABAAAABQAAAFJFOiAAAAAAgjI=
------ =_NextPart_000_01BD572B.149EBEC0--